Correspondence matching in unorganized 3D point clouds using Convolutional Neural Networks
نویسندگان
چکیده
منابع مشابه
Surface Reconstruction from Unorganized 3D Point Clouds
Computer-based surfacemodels are indispensable in several fields of science and engineering. For example, the design and manufacturing of vehicles, such as cars and aircrafts, would not be possible without sophisticated CAD and simulation tools predicting the behavior of the product. On the other hand, designers often do not like working on virtual models, though sophisticated tools, like immer...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Semantic Segmentation of Indoor Point Clouds Using Convolutional Neural Network
As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating semantically enriched BIM from point cloud data is in its infancy. The previous research to enhance the semantic content rely on framewor...
متن کاملRetrieving Matching CAD Models by Using Partial 3D Point Clouds
The ability to search for a CAD model that represents a specific physical part is a useful capability that can be used in many different applications. This paper presents an approach to use partial 3D point cloud of an artifact for retrieving the CAD model of the artifact. We assume that the information about the physical parts will be captured by a single 3D scan that produces dense point clou...
متن کامل3D Point Cloud Classification and Segmentation using 3D Modified Fisher Vector Representation for Convolutional Neural Networks
The point cloud is gaining prominence as a method for representing 3D shapes, but its irregular format poses a challenge for deep learning methods. The common solution of transforming the data into a 3D voxel grid introduces its own challenges, mainly large memory size. In this paper we propose a novel 3D point cloud representation called 3D Modified Fisher Vectors (3DmFV). Our representation i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Image and Vision Computing
سال: 2019
ISSN: 0262-8856
DOI: 10.1016/j.imavis.2019.02.013